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The prediction of the propagation of sound in the hot gas flowing along an internal 
combustion (IC) engine exhaust duct is a common practical problem. Associated with the 
flow temperature T(x), where x is the axial displacement along the duct and, say, one- 
dimensional motion or plane wave propagation, there will be a corresponding axial velocity 
u(x, t), density p(x, t) pressure p(x, t) and entropy s(x, t), all having both mean and 
fluctuating (“acoustic”) parts. Such exhaust systems normally consist of a sequence of 
uniform pipes connecting area discontinuities such as expansions, orifices, branches and 
so on, which extend from the source of excitation to the final open termination. Each 
section or element of such systems can then be regarded as being excited by a preceding 
element and terminated by its successor. 

The acoustic transfer characteristics of each element are often represented by an approp- 
riate transfer matrix based on the approximate analogy that can be drawn between their 
acoustic behaviour and that of some corresponding electrical network. However, practical 
experience [1] has demonstrated that such acoustic analogies with network theory may 
not always provide valid predictions, and thus should only be adopted after appropriate 
consideration of their physical realism. 

Acoustic plane wave transmission across an individual element or any sequence of 
elements is illustrated in Figure 1. Here, 5’ represents the source of excitation for the 
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Figure 1. Plane wave acoustic transmission across an element 

element or sequence T, while 2 represents the acoustic impedance at its termination. For 
isentropic plane acoustic wave propagation across the element, the complex amplitude? 
p+ of the positively travelling and p- of the negatively travelling wave components are 
related to the corresponding fluctuating acoustic pressure p and acoustic velocity u by 

P=P+ +p-, pocou=p+ -p-, (1,2) 

where p. and co are respectively the undisturbed density and sound speed in the medium 
and p, u, p+ and p- are all functions of position x. 

It has been demontrated [2] that equation (1) is valid irespective of the existence or 
otherwise of a steady mean flow velocity uo, while equation (2) is similarly valid only as 
long as wave attenuation and dispersion by viscothermal actions remain negligible. The 
wave components p: on the source side of T can be related to p: on the load side by 

P: = T,,p: + T12p; , P; = 7-2, P: + T22p; , (X4) 

t Simple harmonic motion is assumed henceforth, with a common implicit time dependence factor e’“‘. where 
o( =21rf) is the radian frequency, for all acoustic pressure and velocity quantities. 
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where T,, , T12, T2, and T22 are the four elements of the scattering transmission matrix 
[T] defining the transfer. The complex values of these four elements are all functions of 
the geometry of the system element, of the undisturbed values of the density p. and sound 
speed co, of the frequency of excitation, f, of the mean flow Mach number M= uo/co , but 
remain independent of the value of Z. This last fact provides an experimental or analytical 
method for establishing the values of the matrix elements. 

Obviously, equations (1) and (2) imply that the fluctuating acoustic pressure pI and 
velocity ul complex amplitudes on the source side of T can be related to p2 and u2 on the 
load side in terms of the corresponding impedance transfer matrix [t], by expressions 
analogous to equations (3) and (4). The four elements of [t] exhibit a similar independence 
of Z and are also functions of geometry, po, CO, f and M. The elements of the scattering 
matrix [T] are all dimensionless combinations of the relevant physical parameters, while 
those of [t] are not all similarly dimensionless. The relative difficulty of measuring the 
acoustic particle velocity, U, compared with measurement of the fluctuating pressure, p, 
combined with the restricted validity of equation (2), suggest that the scattering matrix [T] 
provides more robust descriptions of the wave transfer than does the impedance matrix [t]. 

To return to Figure 1, acoustic wave transmission across the system element T can also 
be expressed in terms of the transmission coefficients 

T,=P:/P;, T,=P;/P;, 

together with the reflection coefficient, r, where 

r =pY /p: , or r=(i-l>l(i+lh (6% b) 

and [ = Z/~OCO ; note also that p; /p: = rT,/Ti. From equations (3) and (4) the transmis- 
sion coefficients are related to the elements of the scattering matrix [T] by 

Tic TII +rTi2, Tr=(Tdr)+T22, 0, b) 

showing that Ti and T, are both functions of r, and hence of Z as well as of geometry, po, 
co,fandM. 

Calculated, or measured, values, or if required the spectral estimates of (Ti), and (T,), 
corresponding to Z, and the reflection coefficient r,, together with (Ti), and (T,.)b with rh, 
can then be used in equations (7a) and (7b) to give 

TII =[tTi),r,-(Tj)br,ll[rb-ral, T~z=[(Ti)b-(Ti)~l/[rb-r~l, @a, b) 

T21 =rsrb[(Tr)a-(Tr)bll[rb-ml, T22 = [(T&-b - ( TJarallb - rd. (8~ 4 
With an anechoic termination Z, = poco, so that p; and hence r, are both zero, one has 

TII =(K),, Tiz=[(Ti),-(c),]/rb, T,i =tp;/p:)a, T22 = ( Tr)b - T2, /b . 
Pa, b) 

Equations (9) together show that measurements of (Ti)b and ( T,.)b are always required for 
the evaluation of Ti2 and T22, unless the transfer matrices possess the required reciprocity 
property. If such is the case, as is normal with electrical networks, then Ti2 is minus T,, 
and T22 is the complex conjugate of Tll. 

Clearly, when a mean flow exists, the acoustic behaviour cannot be reciprocal, and 
similarly also when axial temperature gradients are present. Both conditions are relevant 
for IC engine exhaust systems, although it has been shown [3] that, with the axial gradients 
normally present, a close approximation to the acoustic behaviour is predicted if the 
average temperature over the system element is adopted to evaluate p. and co, It has also 
been shown [2] that, at the lower excitation frequencies of practical interest, neglect of 
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wave attenuation and dispersion by viscothermal action may not provide valid predictions 
of acoustic performance. Finally, one must always ensure that all relevant boundary 
conditions are included during the analysis. 

One can always check whether the transfer matrices for any particular system element 
possess the reciprocal property by seeing whether the value of the ratio RT= Re (7’&, 
Re (T, ,) is unity and whether IT= Im (T&/Im (T, ,) is equal to - 1. A similar check can 
be made with the values of the equivalent ratios R, and Z, formed with T12 and T,, to see 
that both equal - 1, although experience suggests that the first pair provide a sufficient 
and more sensitive test. 

A simple cylindrical expansion chamber with hard walls and zero mean flow provides 
a first example, since it is widely accepted that its transfer matrix is reciprocal. However, 
it is only exactly so if the evanescent waves required to satisfy the boundary conditions 
over the end surfaces are neglected. Calculations performed with a four-fold area expansion 
ratio (chamber to pipe area equal to 4.17) and a chamber aspect ratio (length to diameter) 
of 6.25 showed that inclusion of the boundary conditions at the chamber end surfaces 
introduced systematic deviations from unity in the value of RT, but insignificant changes 
in the corresponding values of the other three ratios. 
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Figure 2. Acoustic transmission with different media : (a) for a simple expansion chamber: I h1 includinp Fide 
branches of equal length. -, RT, with an ideal fluid: - -, T, : -- -- --. ZT. with air. 
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The upper curve in Figure 2(a) presents the results of the calculations of Rr covering a 
range of frequencies, f, corresponding to the first three acoustic wavelengths. They are 
plotted against the reduced frequency F,= Lcf/co, with the chamber length L,= 0.5 m, a 
value adopted throughout the calculations reported here. The results indicate a systematic 
increase in the value of RT with frequency, with distinct fluctuations at odd multiples of 
a half wavelength. The lower curve in Figure 2(a) demonstrates the result of including 
viscothermal effects in the calculation of R T. In this case there is also a corresponding 
trend with frequency to higher negative values for the ratio IT, the largest exceeding -2 
at one wavelength. The corresponding values of the other two ratios R, and Zc did not 
depart significantly from - 1. 

An expansion chamber which includes two side branches of equal length, so that the 
geometry remains symmetrical, provides a second example. It is well known that the 
acoustic transfer characteristics of such acoustic filters are dominated by the sequence of 
side branch resonances. The results of calculations with side branch lengths L,=O. 15 m, 
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giving an effective first side branch resonance at F, = O-8 when the appropriate boundary 
conditions are included [2], are plotted in Figure 2(b). The upper curve confirms that the 
value of RT is strongly influenced by side branch resonance. The lower two curves give the 
corresponding results for Rr and IT when viscothermal effects are included. 

An expansion chamber which includes the practically more useful case of two unequal 
side branches with L, equal to 0.2 and to 0.1, corresponding to first resonances at F, = 
O-61 and 1.18 respectively, provides a third example. The total length of the side branches 
remains the same as in the previous example, while the calculations were made with 
viscothermal effects included to limit the amplitudes of the resulting peaks. In Figure 3(a) 
are shown the results for RT and Z,, where the marked effect of first side branch resonance 
at F, = O-61 interacting with the chamber resonance at F, = 0.78 can be seen. In this case 
the calculations of R, and Z, are also included in Figure 3(b) where the influence of the 
first side branch resonances at F,=O*61 and 1.18 are clearly shown. 

The calculations for the first and third examples were repeated with a steady mean flow 
in the pipe corresponding to a Mach number of 0.14. The results for IT and R7 for the 
expansion chamber, shown in Figure 4(a), were calculated both with an inviscid medium 
and with viscothermal effects included. Comparison with Figure 2(a) demonstrates the 
large changes in R, and IT results from the flow. There is now also a distinct influence on 
the values of IT, as indicated in Figure 4(b). The influence of the same mean flow in the 
third example introduced distinct changes in the amplitudes and frequencies of the resonant 
peaks, as can be seen by comparing the results in Figures 5(a) and 5(b) with those in 
Figures 3(a) and 3(b). This apparently runs counter to some claims in the literature that 
the influence of mean flow on the side branch resonances may be neglected at low Mach 
numbers. In the present case the value of the Mach number within the chamber is less 
than 0.034, while the influence on the calculated ratios of the scattering matrix elements 
is obviously large. This arises mainly from the influence that the flow in the attached pipes 
has on the transfers at the junctions. 

The results presented here show that the transfer characteristics of the representative 
acoustic filters considered here do not possess the reciprocity property unless the relevant 
boundary conditions are ignored, the fluid medium is inviscid, the geometry is symmetrical 
and there is no mean flow. All of these restrictions are hardly plausible in a practical 

8- 

,c 6- 

C : 
4- 

8 

_ 2 

. a? 
4 

0 

I 
-2b ’ ’ ’ ’ 13 ’ ’ ’ ’ 3 ’ ’ s-4 t1.1.1.. . I I.. 1 * s .1 

0.0 0.4 0.0 1.2 1.6 0.0 0.4 0.8 1.2 1.6 
FC 

Figure 3. Acoustic transfer with dry air and side branches of differing length. (a) -, Rr; - -, IT; 
(b) -, R,.; -- -- -, I,. 



LETTERS TO THE EDITOR 337 

(a) 
40 - 

30 - 

20 - 

(r’ 

10 - 

o- 

-10 - 

J 

: 20- 

lo- 

-,” _ 

- It” 

O- 

\- 

: -lO- 

i rI I I I I 1 I I I I. I I 1 I .I tl 
0.0 0.4 0.6 1.2 I.6 0.0 0.4 0.0 l-2 1.6 

FC 

Figure 4. Acoustic transfer with a mean flow through a simple expansion chamber. (a) - ~~, R,-. ideal 
fluid ; -7 RT. air; (b) -, Rr, air; - - - -, IT. air. 
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Figure 5. Acoustic transfer with a mean airflow and side branches of differing length. (a) , 
RT; -3 IT ; (b) -m, R,. : - - - -, I, 

application. The resealing of measured transmission matrices to account for changes in 
mean mass flow, in the temperature and in the other physical properties of the acoustic 
medium is also not directly obvious. Temperature changes can be approximately accommo- 
dated by resealing the corresponding frequencies of excitation by the ratios of the corre- 
sponding sound speeds to maintain the factors&/c,, at a constant value, but this does 
not accommodate the accompanying changes in fluid density and viscosity. 

It has been shown also that evaluation of the four components of the transmission 
matrices requires two measurements of the transmission coefficient ri and T, with distinctly 
different acoustic termination impedances Z. Thus, in all cases of parametric studies with 
a system, it is simpler to work directly with T, and T,, unless all the flow conditions along 
with the filter geometry remain invariant to ensure that the components of the transfer 
matrices retain constant values. The mathematical convenience arising from the fact that 
the components of the transfer matrix remain independent of r is of little practical value, 
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due to this lack of flexibility, when the geometry of the system elements requires successive 
adjustments during system development towards a required acoustic performance. The 
results also demonstrate the care necessary to ensure that all acoustically relevant physical 
features of an acoustic filter are included in any evaluation of acoustic transfer characterist- 
ics. Finally, it is clear that this restriction will severely limit the validity of the electroacous- 
tic analogy for this purpose, since electrical networks possess the reciprocal property while 
exhaust system acoustic elements generally do not. 
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